Response Asymmetry of Latin American Stock Markets to the U.S. Money Market

Priti Verma* and Rahul Verma**

Studies have shown that relative increase (decrease) in the U.S. interest rate is associated with capital outflows (inflows) from the emerging. For example, changes in 3 months U.S. Treasury Bill yield has slow and varying impact on Latin American stock markets. This paper investigates the existence (if any) of asymmetries in equity markets of Mexico, Brazil, Chile and Argentina to increase and decrease in the U.S. interest rates. We find that the magnitude and the duration of time in which the increase in the U.S. interest rate is fully reflected in equity markets of Latin America is significantly different from that of the decrease in the U.S. interest rates. The results are consistent with the view that international investors react to downturns more heavily than rewarding such upturns in the U.S. economy. We conclude that if portfolios are formed based on average co-movements, which assume symmetry, the performance of the investment could be worse than expected in the down markets.

Keywords: Equity markets, Latin America, Response Asymmetries
JEL classification codes: G15, O54, F30

1. Introduction

The recent crisis in the Europe which started with a fear of possible sovereign default by Greece caused a dramatic collapse of financial markets in both Europe and U.S. During the same time Latin American markets have shown a remarkable resilience and it is not surprising that international investors have renewed their interest in these markets. Over the past decade, the capital flows in the region have increased rapidly as investors included these emerging market securities in their portfolios to take advantage of potential diversification benefits. To better understand the underlying characteristics of these emerging markets, researchers have investigated the transmission patterns of equity market movements between the U.S., Mexico, Argentina and Brazil (Verma and Verma, 2005; Soydemir, 2000; Meric et al. 2001a, b; Ratanapakorn and Sharma, 2002); interconnectedness of Latin American equity markets (Ratner and Leal, 1996; Choudhry, 1997; Meric et al. 1998; Christofi and Pericli, 1999; Pagan and Soydemir, 2000; Chen et al., 2000; Pretorius, 2002; Johnson and Soenen, 2003); macroeconomic variables and Latin American equity markets (Bailey and Chung, 1995; Bilson et al., 2001; Adrangi et al., 2001); impact of the U.S. interest rates on Latin American equity markets (Soydemir, 2002); response pattern of Latin American equity markets to cross-country macroeconomic movements (Verma and Ozuna, 2005); time series

*Priti Verma, College of Business, Texas A&M University, Kingsville, Kingsville, TX. E-mail: priti.verma@tamuk.edu.
**Rahul Verma, College of Business, University of Houston-Downtown, Houston, TX. E-mail: vermar@uhd.edu.
characteristics of Latin American equity markets (Ortiz and Arjona, 2001); and the issue of contagion (Calvo and Reinhart, 1996; Bazdresch and Werner, 2000).

However, an area of research that has achieved little attention in the literature is whether Latin American equity market reacts differently in terms of speed and magnitude to increase and decrease in the U.S. interest rates. This issue is important because these emerging fragile equity markets could be vulnerable to asymmetric spillovers and contagion effects from the U.S. economy. As such, understanding the co-movement of these emerging markets with the U.S. economy in different market scenarios is important for portfolio management.

This study extends prior research by analyzing whether Latin American equity markets react differently to the positive as opposed to negative shocks in the U.S. money market. Specifically, we investigate the existence of asymmetry in the case of equity markets of Mexico, Brazil, Argentina and Chile. Answers to questions are important since the state of the U.S. money market (up and down) might play an important role in forecasting the Latin American equity market movements. They also have important implications for policymakers that seek to reduce country spillover effects and investors who aim to improve their portfolio performance. Using monthly data and generalized impulse responses from the VAR model, we find that the magnitude and the duration of time in which the increase in the U.S. short term interest rate is fully reflected in equity markets of Latin America is significantly different from that of the decrease in the U.S. money market rates. The results are consistent with the view that international investors react to downturns more heavily than rewarding such upturns in the U.S. economy. We conclude that if portfolios are formed based on average co-movements, which assume symmetry, the performance of the investment could be worse than expected in the down markets.

This paper is organized as follows: Section two discusses the theoretical background on response asymmetry and stock prices while sections three and four presents the econometric methodology and the data. Section five discusses the empirical results and this is followed by the concluding remarks provided in section six.

2. Theoretical framework

Asymmetries may arise from differences in return expectations among investors about the potential international impact of changes in foreign stock markets (Erb, Harvey and Viskanta, 1994; Odier and Solnik, 1993). For example, a small downturn in the U.S. financial markets could trigger relatively larger downturn in the Latin American markets due to widespread earnings disappointment among investors rather than as a result of the particular magnitude of the U.S. market decline. Recent evidence suggest that the return distributions are not symmetric for the U.S. (Fama, 1965; Richardson and Smith, 1993); for developed markets (Harvey and Zhou, 1993) and for the emerging markets (Harvey, 1995).
Verma & Verma

Asymmetries may occur due to the investment strategies based on incomplete and irrelevant information. Such information set could lead to biased investments leading to irrational buying or selling. In such cases, the effect of capital flows on equity markets could be dissimilar for upturn than downturn. Aitken (1996) suggest that institutional investor sentiments towards emerging markets can help determine equity prices in these markets. The institutional investors lacking local knowledge about each individual country’s fundamentals may treat these markets as if they belong to a unique class. However, the importance of local information is increasing due to the segmented nature of emerging markets (Harvey, 1995). Therefore, investment strategies based on biased information could lead to asymmetric responses.

Asymmetries may also occur due to the unidentified component of risk which is priced in equity markets. Fama and French (1992) suggest the existence of multidimensional risks associated with any stock. One dimension of risk is the unidentified risk which is nonetheless reflected in stock prices. However, the relationship between the unidentified components of risk with stock returns may not be linear and therefore may lead to dissimilar positive and negative returns to investors. Downs and Ingram (2000) provide evidence in support of this argument and find that up market betas are not equal to down market betas in absolute terms. Similarly, there is evidence in support of positive (negative) relationship between beta and returns in up market (down market) for the U.S. market by Pettengill, Sudaram and Mathur (1995) and for international equity markets by Fletcher (2000).

The economic rationale for asymmetric response can also be explained from the behavioral standpoint of investor psychology. Investors, in general, are more concerned about market downturns than upturns, partly due to their risk-aversion. Thus, this tendency towards risk-aversion will be reflected in market prices, causing greater market responses to downturns in other markets. The evidence on momentum profitability and reversals suggest the effect of investor sentiments on the stock market may be asymmetric (Hong, Lim and Stein, 2000; Hong and Stein, 1999). The asymmetric effect of sentiments on the stock market is attributed to the limits to arbitrage (Brown and Cliff, 2004) and overconfidence (Gervais and Odean, 2001; Daniel, Hirshleifer and Subrahmanyam, 1998).

Price movement asymmetries have been found in Asian markets (Bahng and Shin, 2003); Australian equity market (Iorio and Faff, 2000); EMS exchange rates (Laopodis, 2001); commodity markets (Karrenbrock, 1991); goods market (Peltzman, 2004) and real and underground output in New Zealand (Giles, 1999). In the light of the above theoretical propositions and empirical findings, we can expect asymmetric responses of Latin American equity markets to external positive and negative shocks. Specifically, upturns and downturns in the U.S. market could lead to asymmetry since the U.S. business condition is the major global factor affecting these markets (Taylor and Sarno, 1997).
3. Econometric methodology

We undertake the following approach the presence/absence of asymmetric response of Latin American stock prices to the U.S. money market. Returns in equity market \(R_i \) are defined to have a magnitude asymmetric impact if an increase in the equity market \(R_j \) affects equity market \(i \) differently than a decrease of equal magnitude. The statistical model takes the following form (Eqs. 1–3). The statistical model captures contemporaneous relationships of equity returns between the markets (see Karoyli and Stulz, 1996).

\[
R_i = \alpha_0 + \alpha_1 R_{j,t} + \alpha_2 R_{D,j,t} + \alpha_3 R_{j,t-k} + \varepsilon_t \quad (1)
\]

\[
RI_t = \begin{cases} P_t - P_{t-1}, & \text{if } P_t - P_{t-1} > 0 \text{ and } = 0 \text{ otherwise,} \\ P_t - P_{t-1} & \text{if } P_t - P_{t-1} < 0 \text{ and } = 0 \text{ otherwise.} \end{cases} \quad (2)
\]

\[
RD_t = \begin{cases} P_t - P_{t-1}, & \text{if } P_t - P_{t-1} > 0 \text{ and } = 0 \text{ otherwise,} \\ P_t - P_{t-1} & \text{if } P_t - P_{t-1} < 0 \text{ and } = 0 \text{ otherwise.} \end{cases} \quad (3)
\]

where \(\alpha_0 \) is a constant term, \(\varepsilon_t \) is error term and \(\alpha_1, \alpha_2, \alpha_3 \) are the parameters to be estimated. \(P_t \) and \(P_{t-1} \) are expressed in logarithms so that returns are continuously compounded returns (Tsay, 2002). All \(RI_t \) are positive or zero and all \(RD_t \) are negative and zero. In Eq.(1), we test the null hypothesis that the upturns and downturns in market \(j \) have the same effect on the changes in equity market \(i \). For example, if the Mexican market \(R_i \) responds symmetrically to the U.S. money market upturn \((RI_j) \) and downturn \((RD_j) \), then one would expect to find \(\alpha_1 = \alpha_2 \). The lag appropriate length of \(k \) may be sufficient to characterize the model dynamics and capture the return generating process. In order to obtain unbiased and efficient parameter estimates, we also assume that the constant \(\alpha_0 \) captures the average influence of factors that are not explained by changes in the U.S. market.

Returns in equity market \(i (R_i) \) are defined to have a pattern asymmetric impact if the magnitude of the effects from the upturns and downturns in the equity market \(j (R_j) \) changes over time (see Ng, 1998; Iorio and Faff, 2000; Peltzman, 2000; Laopodis, 2001; Pagan and Soydemir, 2001; Bahng and Shin, 2003). We investigate the presence/absence of pattern asymmetry by estimating a ten variable VAR model (Sims, 1980). Thus VAR model captures the dynamic feedback effects in a relatively unconstrained fashion and is therefore a good approximation to the true data generating process. We express the VAR model as:

\[
Z(t) = C + \sum_{s=1}^{m} A(s)Z(t-m) + \nu(t) \quad (4)
\]

where, \(Z(t) \) is a column vector of variables under consideration, \(C \) is the deterministic component comprised of a constant, \(A(s) \) is a matrix of coefficients, \(m \) is the lag length and \(\nu(t) \) is a vector of random error terms. By construction, \(\nu(t) \) is uncorrelated with past \(Z(t) \).

The VAR specification allows the researchers to do policy simulations and integrate Monte Carlo methods to obtain confidence bands around the point estimates (Doan, 1988; Genberg et al. 1987; Hamilton, 1994). The likely response of one variable at time
t, $t+1$, $t+2$ etc. to a one time unitary shock in another variable at time t can be captured by impulse response functions. As such they represent the behavior of the series in response to pure shocks while keeping the effect of other variables constant. Since, impulse responses are highly non-linear functions of the estimated parameters, confidence bands are constructed around the mean response. Responses are considered statistically significant at the 95% confidence level when the upper and lower bands carry the same sign. We employ the recently developed generalized impulses technique as described by Koop, Pesaran and Potter (1996) and Pesaran and Shin (1998; 1996) in which an orthogonal set of innovations does not depend on the VAR ordering. These generalized impulses can capture the effect of unanticipated components and therefore can be regarded as an appropriate choice for this study.

4. Data

We obtain all data in monthly intervals from September 1988 to December 2008 from Datastream. In addition to the U.S. money market, we include the following four Latin American countries in our study: Mexico, Argentina, Brazil, and Chile. Chile are ranked 1st, 2nd, 3rd, and 4th respectively among Latin American equity markets. As measured by the turnover ratio, Brazil (45), Mexico (33) and Chile (10) are the three most liquid stock markets in the region. Eun and Resnick (2004) suggest the liquidity in these markets have been improving significantly. Further, these markets have been found to be significantly affected by the U.S. stock market and the U.S. economy by varying degrees.

The market variable identified for these countries are the major indexes in their respective stock markets. Specifically, we include the following indexes in our study: U.S. treasury bill rate (U.S. T.B), IPC BOLSA (Mexico), BOVESPA (Brazil), General IGPA (Chile), and MERVAL (Argentina). We take the first difference of natural logarithm of all the indexes to obtain the continuously compounded return series (Tsay, 2002).

Table 1 reports the descriptive statistics for the continuously compounded monthly returns. Brazil, Mexico and Argentina’s stock market have high standard deviation, suggesting highly volatile nature of these markets. In comparison, Chile exhibits low volatility, similar to the U.S. market. The Brazilian stock market has the highest mean and the highest standard deviation suggesting that investors are compensated for bearing higher risk. In all the cases, the mean values are substantially different from the median values indicating the possible existence of asymmetry. Table 2 reports the cross correlation between the variables.
Verma & Verma

Table 1
Descriptive Statistics: Returns

<table>
<thead>
<tr>
<th></th>
<th>Argentina</th>
<th>Brazil</th>
<th>Chile</th>
<th>Mexico</th>
<th>U.S.</th>
<th>U.S. T Bills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>-0.0123</td>
<td>0.0845</td>
<td>0.0089</td>
<td>0.0409</td>
<td>0.0520</td>
<td>-0.0082</td>
</tr>
<tr>
<td>Median</td>
<td>0.0100</td>
<td>0.0350</td>
<td>0.0000</td>
<td>0.0300</td>
<td>0.0300</td>
<td>0.0000</td>
</tr>
<tr>
<td>Maximum</td>
<td>19.4700</td>
<td>26.2700</td>
<td>5.8700</td>
<td>16.5200</td>
<td>4.9800</td>
<td>42.0800</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>2.5726</td>
<td>3.0243</td>
<td>0.9318</td>
<td>2.2664</td>
<td>1.0112</td>
<td>1.8382</td>
</tr>
<tr>
<td>Skewness</td>
<td>-0.5557</td>
<td>0.2567</td>
<td>-0.0111</td>
<td>-0.2416</td>
<td>-0.4544</td>
<td>1.3372</td>
</tr>
</tbody>
</table>

Table 2
Cross-correlations of percentage returns

<table>
<thead>
<tr>
<th></th>
<th>Argentina</th>
<th>Brazil</th>
<th>Chile</th>
<th>Mexico</th>
<th>U.S. T Bills</th>
<th>U.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>1.000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>0.500414</td>
<td>1.000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chile</td>
<td>0.370107</td>
<td>0.417413</td>
<td>1.000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>0.439541</td>
<td>0.485963</td>
<td>0.379924</td>
<td>1.000000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. T Bills</td>
<td>0.018948</td>
<td>0.039427</td>
<td>-0.000172</td>
<td>0.030982</td>
<td>1.000000</td>
<td></td>
</tr>
<tr>
<td>U.S.</td>
<td>0.351211</td>
<td>0.365563</td>
<td>0.289543</td>
<td>0.405108</td>
<td>0.084027</td>
<td>1.000000</td>
</tr>
</tbody>
</table>

Before proceeding with the main results, we first check the time series properties of each variable by performing unit root tests. Table 3 reports the results of unit root tests using Augmented Dickey Fuller (ADF) test (Dickey and Fuller, 1979, 1981) and Kwiatkowski, Phillips, Schmidt, and Shin (1992) (KPSS test). Based on the consistent and asymptotically efficient AIC and SIC criteria (Diebold, 2003) and considering the loss in degrees of freedom, the appropriate number of lags is determined to be two. In the case of the ADF test, the null hypothesis of nonstationarity is rejected. In the KPSS test, the null hypothesis is that each series is stationary. We fail to reject the null hypothesis in the case of KPSS test. The inclusion of drift/trend terms in the ADF and KPSS test equations does not change these results (Dolado, Jenkinson, and Sosvilla-Rivero, 1990).
Table 3
Augmented Dickey-Fuller test results

<table>
<thead>
<tr>
<th></th>
<th>Log levels</th>
<th>Log return</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>0.0152</td>
<td>-21.7161</td>
</tr>
<tr>
<td>Brazil</td>
<td>-2.9820</td>
<td>-22.9927</td>
</tr>
<tr>
<td>Chile</td>
<td>-1.4726</td>
<td>-18.0685</td>
</tr>
<tr>
<td>Mexico</td>
<td>-1.8174</td>
<td>-19.7183</td>
</tr>
<tr>
<td>U.S</td>
<td>-1.4503</td>
<td>-22.1816</td>
</tr>
<tr>
<td>U.S. T Bills</td>
<td>0.9887</td>
<td>-22.4329</td>
</tr>
</tbody>
</table>

Critical level: 0.01 -3.4363
Critical level: 0.05 -2.8633
Critical level: 0.10 -2.5677

5. Estimation results

We employ VAR model to examine whether the magnitude of the asymmetry is time invariant. First, we construct the variables related to upturn and downturn in all the markets based on Eqs. (2) and (3). Second, we estimate a ten variable VAR model (upturn and downturn series for each of the five markets) with two lags, in accordance with Eq. (4). Sims (1980) and Enders (2003) indicate that the VAR coefficient estimates are not very useful and that the tool we should employ to interpret the VAR results are the impulse response functions obtained from the VAR model. Thus, we analyze the generalized impulse response functions generated from the VAR model.

Figure 1a and 1b plot the impulse responses of Mexico’s equity market to one time upturn and downturn (one standard deviation shock) in the U.S. money market. The solid line represents the mean response and the dashed lines are confidence bands around the mean response. A total of 500 draws were employed in the Monte Carlo simulations to obtain the standard errors. The responses are said to be statistically significant when the dashed responses carry the same sign. The response of the Mexican market to the U.S. upturn is shorter and less pronounced (figure 1a) as compared to those of the U.S. downturn (figure 1b). In case of the U.S. upturn there is a response of approximately 0.01 as compared to 0.025 in the case of the U.S. downturn. Also, in the former case, the responses are statistically significant only during the third month, while in the latter case the responses are significant from the second to the fourth month. The results suggest the presence of pattern asymmetry and provide further evidence against magnitude symmetry in the case of Mexico equity market.
Figure 1

Response of Mexico to upturn and downturn in the U.S. money market

The dashed lines on each graph represent the upper and lower 95% confidence bands. When the upper and lower bounds carry the same sign the response becomes statistically significant.

* On each graph, “percentage returns” are on the vertical and “horizon” is on the horizontal axis.

Figure 2a and 2b plot the impulse responses of Brazil's equity market to one time standard deviation shock in upturn and downturn in the U.S. money market. Similar to the results for Mexico, the response of Brazil's upturn to the U.S. upturn is not very pronounced and short lived (figure 2a). However, the response of Brazil's downturn to the U.S. downturn is much more pronounced and last during the second to the fourth
month (figure 2a). The results from this analysis provide evidence in favor of pattern and magnitude asymmetry in the case of Brazil's equity market.

Figure 2
Response of Brazil to upturn and downturn in the U.S. money market

![Graph of Figure 2a](image1.png)

![Graph of Figure 2b](image2.png)

The dashed lines on each graph represent the upper and lower 95% confidence bands. When the upper and lower bounds carry the same sign the response becomes statistically significant.

* On each graph, “percentage returns” are on the vertical and “horizon” is on the horizontal axis.

Figure 3a and 3b plot the generalized impulse responses of Argentina’s equity market to one time standard deviation increase in upturn and downturn in the U.S. money market. Once again the response of the upturn to the U.S. upturn is of magnitude close to 0.01 (figure 3a) as against approximately 0.025 (figure 3b) in the case of downturn to the U.S. downturn. Further, in the former case, the response is statistically significant for a
small time period during the third month, while in the latter case, the responses are statistically significant from second to the fourth month. The responses to upturns become insignificant much faster than downturn responses, suggesting pattern asymmetry in the case of Argentinean equity market.

Figure 3
Response of Argentina to upturn and downturn in the U.S. money market

The dashed lines on each graph represent the upper and lower 95% confidence bands. When the upper and lower bounds carry the same sign the response becomes statistically significant.

* On each graph, “percentage returns” are on the vertical and “horizon” is on the horizontal axis.

Figure 4a and 4b plot the impulse responses of Chile’s equity market to one time upturn and downturn (one standard deviation shock) in the U.S. money market. Similar to the earlier, results the response of downturn is of much greater magnitude and becomes insignificant slower than the response of the upturn. However, the response of Chilean
equity market is less pronounced than Mexico, Brazil and Argentina. This is consistent with previous findings that Chile is less affected by the U.S. market.

Figure 4
Response of Chile to upturn and downturn in the U.S. money market

The dashed lines on each graph represent the upper and lower 95% confidence bands. When the upper and lower bounds carry the same sign the response becomes statistically significant.

* On each graph, “percentage returns” are on the vertical and “horizon” is on the horizontal axis.

In summary, the results of the generalized impulse responses generated from the VAR model show that both the timing, as well as the extent of responses of the equity markets of Mexico Brazil, Argentina and Chile is not symmetric when there are shocks to the U.S. money market.
6. Conclusion

In this paper, we investigate the existence of asymmetries in Latin American equity markets to upturn and downturn in the U.S. money market. An equity market displays an asymmetric response when returns display differently to market upturns (bullish) than downturns (bearish) in terms of both speed and magnitude. The economic rationale for this asymmetric response can be explained from the behavioral standpoint of investor psychology. Investors, in general, are more concerned about market downturns than upturns, partly due to their risk-aversion. Thus, this tendency towards risk-aversion will be reflected in market prices, causing greater market responses to downturns in other markets.

The empirical results suggest the existence of asymmetries in the equity markets of Mexico, Brazil, Argentina and Chile. We find that the magnitude and the duration of time in which the upturn in the U.S. money market is fully reflected in equity markets of Latin America is significantly different from that of the downturn in the U.S. market. Specifically, the results show that both the timing as well as the extent of responses of equity markets of Mexico, Brazil, Argentina and Chile is not symmetric when there is a shock to the U.S. money market. Further, increase in the U.S. money market disseminates to Latin American equity markets much faster than decrease. The results are consistent with the view that when investing in emerging equity markets in Latin America, investors react to negative stock market movements in the U.S. more heavily than to positive movements.

These results have important practical implications for investors and policymakers. If the portfolios are formed based on average co-movements, which assumes symmetry, the performance of the investment could be worse than expected in the down markets because the correlations increases.

References

Verma & Verma

Verma & Verma

